Single Image Dehazing: An Analysis on Generative Adversarial Network
نویسندگان
چکیده
منابع مشابه
SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution
Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...
متن کاملGated Fusion Network for Single Image Dehazing
In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result us...
متن کاملGenerative Adversarial Network based on Resnet for Conditional Image Restoration
The GANs promote an adversarive game to approximate complex and jointed example probability. The networks driven by noise generate fake examples to approximate realistic data distributions. Later the conditional GAN merges prior-conditions as input in order to transfer attribute vectors to the corresponding data. However, the CGAN is not designed to deal with the high dimension conditions since...
متن کاملWasserstein Generative Adversarial Network
Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...
متن کاملControllable Generative Adversarial Network
Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and Communications
سال: 2020
ISSN: 2327-5219,2327-5227
DOI: 10.4236/jcc.2020.84010